论文标题
闭环问题:单图超分辨率的双回归网络
Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution
论文作者
论文摘要
深层神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的非线性映射函数,在图像超分辨率(SR)方面表现出了有希望的性能。但是,现有SR方法存在两个基本局限性。首先,学习从LR到HR图像的映射函数通常是一个问题,因为存在无限的HR图像可以将其删除到相同的LR图像中。结果,可能功能的空间可能非常大,这使得很难找到一个好的解决方案。其次,在现实世界应用中,配对的LR-HR数据可能不可用,而潜在的降解方法通常是未知的。对于这样一个更普遍的情况,现有的SR模型通常会引起适应问题并产生差的性能。为了解决上述问题,我们通过对LR数据引入附加约束来减少可能功能的空间来提出双重回归方案。具体而言,除了从LR到HR图像的映射外,我们还学习了附加的双回归映射估算下采样内核和重建LR图像,该图形形成了一个闭环以提供额外的监督。更重要的是,由于双重回归过程不取决于HR图像,因此我们可以直接从LR图像中学习。从这个意义上讲,我们可以轻松地将SR模型调整为实际数据,例如YouTube的原始视频帧。通过配对训练数据和未配对的现实世界数据进行的广泛实验证明了我们优于现有方法。
Deep neural networks have exhibited promising performance in image super-resolution (SR) by learning a nonlinear mapping function from low-resolution (LR) images to high-resolution (HR) images. However, there are two underlying limitations to existing SR methods. First, learning the mapping function from LR to HR images is typically an ill-posed problem, because there exist infinite HR images that can be downsampled to the same LR image. As a result, the space of the possible functions can be extremely large, which makes it hard to find a good solution. Second, the paired LR-HR data may be unavailable in real-world applications and the underlying degradation method is often unknown. For such a more general case, existing SR models often incur the adaptation problem and yield poor performance. To address the above issues, we propose a dual regression scheme by introducing an additional constraint on LR data to reduce the space of the possible functions. Specifically, besides the mapping from LR to HR images, we learn an additional dual regression mapping estimates the down-sampling kernel and reconstruct LR images, which forms a closed-loop to provide additional supervision. More critically, since the dual regression process does not depend on HR images, we can directly learn from LR images. In this sense, we can easily adapt SR models to real-world data, e.g., raw video frames from YouTube. Extensive experiments with paired training data and unpaired real-world data demonstrate our superiority over existing methods.