论文标题
机器学习确定无序材料中的无尺度特性
Machine learning identifies scale-free properties in disordered materials
论文作者
论文摘要
无序系统中的大量设计自由扩展了信号处理的参数空间,从而允许与常规系统中的唯一信号流。但是,这种大量的自由阻碍了目标功能无序系统的确定性设计。在这里,我们采用一种机器学习(ML)方法来预测和设计无序结构中的波形相互作用,从而识别波浪的无标度特性。为了抽象和绘制波浪行为和无序结构的特征,我们开发了无定位和定位至二级卷积神经网络(CNN)。每个CNN都可以瞬时预测无序结构中的波浪定位,并从给定的定位中瞬时产生无序结构。我们证明,CNN生成的无序结构具有无尺度的特性,具有沉重的尾巴和集线器原子,这些特性表现出多种数量级的鲁棒性,以至于意外缺陷,例如材料或结构不完美。我们的结果验证了ML网络结构在确定ML生成的真实空间结构中的关键作用,该结构可用于设计缺陷免疫和有效调谐设备。
The vast amount of design freedom in disordered systems expands the parameter space for signal processing, allowing for unique signal flows that are distinguished from those in regular systems. However, this large degree of freedom has hindered the deterministic design of disordered systems for target functionalities. Here, we employ a machine learning (ML) approach for predicting and designing wave-matter interactions in disordered structures, thereby identifying scale-free properties for waves. To abstract and map the features of wave behaviours and disordered structures, we develop disorder-to-localization and localization-to-disorder convolutional neural networks (CNNs). Each CNN enables the instantaneous prediction of wave localization in disordered structures and the instantaneous generation of disordered structures from given localizations. We demonstrate that CNN-generated disordered structures have scale-free properties with heavy tails and hub atoms, which exhibit an increase of multiple orders of magnitude in robustness to accidental defects, such as material or structural imperfection. Our results verify the critical role of ML network structures in determining ML-generated real-space structures, which can be used in the design of defect-immune and efficiently tunable devices.