论文标题

重新审视3杆的Willmore球

Willmore spheres in the 3-sphere revisited

论文作者

Heller, Sebastian

论文摘要

Bryant \ cite {Bryant84}将所有Willmore Spheres分类为$ 3 $ - 空间,由$ \ Mathbb r^3 $带有嵌入式平面末端的最小表面。本说明为$ \ Mathbb r^3 $中的属0最小表面提供了新的明确公式,$ 2K+1 $嵌入了所有$ k \ geq4的嵌入式平面。由科比\ cite {bryant88}伪造。

Bryant \cite{Bryant84} classified all Willmore spheres in $3$-space to be given by minimal surfaces in $\mathbb R^3$ with embedded planar ends. This note provides new explicit formulas for genus 0 minimal surfaces in $\mathbb R^3$ with $2k+1$ embedded planar ends for all $k\geq4.$ Peng and Xiao claimed these examples to exist in \cite{PengXiao2000}, but in the same paper they also claimed the existence of a minimal surface with 7 embedded planar ends, which was falsified by Bryant \cite{Bryant88}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源