论文标题
HD 145263:通过极端风化的二氧化硅碎片盘形成的光谱观察?
HD 145263: Spectral Observations of Silica Debris Disk Formation via Extreme Space Weathering?
论文作者
论文摘要
我们在这里报告了从2003年至2014年采集的HD145263二氧化硅磁盘系统的时域红外光谱和光学光度法。我们发现一个F4V宿主星围绕着一个稳定的,巨大的1E22-1E22-1E22-1E22 -1E23 kg(m_moon到m_mars to m_mars)Dist disk。未检测到磁盘气体,并且看到主要恒星旋转,速度〜1.75天。在解决了先前报道的观察结果的问题之后,我们发现粉尘盘的二氧化硅,Mg烯丙基和Fe-丙烯矿物学在整个过程中都是稳定的,并且与通常在原始磁盘和碎屑盘中发现的Ferromagnesian硅酸盐相比非常不寻常。通过与原始太阳系尘埃的中红外光谱特征进行比较,我们探索了HD 145263的偶然性粉尘矿物学发生的可能性是在最初类似彗星的矿物质混合物中的含铁橄榄石,金属硫化物和水冰的优先破坏,以及由含脂肪的含脂肪的矿物质替代的可能性。我们拒绝基于蒸发的光学恒星大型Flares,水性变化或巨大超速影响的模型,因为无法产生观察到的矿物学。涉及异常高的SI丰度的场景与MG,FE和SI的正常恒星吸收近红外功能强度不一致。通过中等(T <1300 K)的加热和通过F4V初级的恒星超级弹药引起的中等(T <1300 K)加热和能量离子溅射的薄表面铜绿的强烈空间风化的模型与观测值一致。太空风化的古铜色应变红,包含大量的纳米相Fe,除非补充,否则应在数十年的时间尺度上进行短暂。
We report here time domain infrared spectroscopy and optical photometry of the HD145263 silica-rich circumstellar disk system taken from 2003 through 2014. We find an F4V host star surrounded by a stable, massive 1e22 - 1e23 kg (M_Moon to M_Mars) dust disk. No disk gas was detected, and the primary star was seen rotating with a rapid ~1.75 day period. After resolving a problem with previously reported observations, we find the silica, Mg-olivine, and Fe-pyroxene mineralogy of the dust disk to be stable throughout, and very unusual compared to the ferromagnesian silicates typically found in primordial and debris disks. By comparison with mid-infrared spectral features of primitive solar system dust, we explore the possibility that HD 145263's circumstellar dust mineralogy occurred with preferential destruction of Fe-bearing olivines, metal sulfides, and water ice in an initially comet-like mineral mix and their replacement by Fe-bearing pyroxenes, amorphous pyroxene, and silica. We reject models based on vaporizing optical stellar megaflares, aqueous alteration, or giant hypervelocity impacts as unable to produce the observed mineralogy. Scenarios involving unusually high Si abundances are at odds with the normal stellar absorption near-infrared feature strengths for Mg, Fe, and Si. Models involving intense space weathering of a thin surface patina via moderate (T < 1300 K) heating and energetic ion sputtering due to a stellar superflare from the F4V primary are consistent with the observations. The space weathered patina should be reddened, contain copious amounts of nanophase Fe, and should be transient on timescales of decades unless replenished.