论文标题
受科学影响问题启发的新的基于单调措施的积分
New monotone measure-based integrals inspired by scientific impact problem
论文作者
论文摘要
在本文中,我们定义了Mesiar和GąGolewski在2016年提出的科学计量指数的新功能,以克服H-INDEX的某些局限性。这些功能是相对于单调度量以及在某些轻度条件下的聚集功能的积分。我们得出了新的积分的众多属性,并详细分析了子粘附性能。我们还为Mesiar和Stupňanová提出的问题提供了部分解决方案,以找到一种用于计算基于操作的n-th订单的伪分解组成的算法,$ \ oplus =+$和$ \ odot = \ wedge $,这对于多机构决策问题非常有用。
In this paper, we define new functionals generalizing scientometric indices proposed by Mesiar and Gągolewski in 2016 to overcome some limitations of h-index. These functionals are integrals with respect to a monotone measure as well as aggregation functions under some mild conditions. We derive numerous properties of the new integrals and analyze subadditivity property in detail. We also give a partial solution to the problem posed by Mesiar and Stupňanová to find an algorithm for computing the pseudo-decomposition integral of n-th order based on operations $\oplus=+$ and $\odot=\wedge,$ which will be useful in multi-criteria decision problems.