论文标题
阳米尔斯理论一阶配方的一致性条件
Consistency Conditions for the First-Order Formulation of Yang-Mills Theory
论文作者
论文摘要
我们研究了阳米尔斯理论的一阶配方的自相存在。通过比较集成其他字段$ f^a_ {μν} $之前和之后的生成功能$ z $,我们得出了一组结构身份,在所有订单上都必须通过绿色的功能来满足。这些身份在任何维度上都与通常的病房身份不同,对于一阶形式主义的内部一致性是必不可少的。它们将涉及字段$ f^a_ {μν} $的绿色功能与二阶配方中的green功能相关联,其中包含gluon强度张量tensor $ f^a_ {μν} $。特别是,这样的身份可以简单地对其他字段$ f^a_ {μν} $提供简单的物理解释。
We examine the self-consistency of the first-order formulation of the Yang-Mills theory. By comparing the generating functional $Z$ before and after integrating out the additional field $F^a_{μν}$, we derive a set of structural identities that must be satisfied by the Green's functions at all orders. These identities, which hold in any dimension, are distinct from the usual Ward identities and are necessary for the internal consistency of the first-order formalism. They relate the Green's functions involving the fields $F^a_{μν}$, to Green's functions in the second-order formulation which contain the gluon strength tensor $f^a_{μν}$. In particular, such identities may provide a simple physical interpretation of the additional field $F^a_{μν}$.