论文标题

Starnet:迈向弱监督的几个射击对象检测

StarNet: towards Weakly Supervised Few-Shot Object Detection

论文作者

Karlinsky, Leonid, Shtok, Joseph, Alfassy, Amit, Lichtenstein, Moshe, Harary, Sivan, Schwartz, Eli, Doveh, Sivan, Sattigeri, Prasanna, Feris, Rogerio, Bronstein, Alexander, Giryes, Raja

论文摘要

近年来,很少有射击检测和分类已大大提高。然而,检测方法需要强有力的注释(边界框),以进行预训练和适应新的类别,并且分类方法很少在场景中提供对象的本地化。在本文中,我们介绍了Starnet-几个型号模型,该模型具有端到端可区分的非参数恒星模型检测和分类头。通过这个头部,仅使用图像级标签进行元训练,以产生良好的功能,以共同定位和对以前看不见的几类测试任务的类别进行分类,该类别使用恒星模型使用查询和支持图像之间的几何匹配(以找到相应的对象实例)。作为几次探测器,Starnet不需要任何边界框注释,在训练期间也不需要新颖的班级适应。因此,它可以应用于以前未开发的且具有挑战性的任务,即弱监督的少数对象检测(WS-FSOD),在该任务中,它对基线的实现了显着改善。此外,Starnet在几片分类的基准上显示出显着的收益,这些基准较少,这些基准在对象周围的裁剪较少(对象定位为关键)。

Few-shot detection and classification have advanced significantly in recent years. Yet, detection approaches require strong annotation (bounding boxes) both for pre-training and for adaptation to novel classes, and classification approaches rarely provide localization of objects in the scene. In this paper, we introduce StarNet - a few-shot model featuring an end-to-end differentiable non-parametric star-model detection and classification head. Through this head, the backbone is meta-trained using only image-level labels to produce good features for jointly localizing and classifying previously unseen categories of few-shot test tasks using a star-model that geometrically matches between the query and support images (to find corresponding object instances). Being a few-shot detector, StarNet does not require any bounding box annotations, neither during pre-training nor for novel classes adaptation. It can thus be applied to the previously unexplored and challenging task of Weakly Supervised Few-Shot Object Detection (WS-FSOD), where it attains significant improvements over the baselines. In addition, StarNet shows significant gains on few-shot classification benchmarks that are less cropped around the objects (where object localization is key).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源