论文标题

Deepemd:可区分的地球移动者的距离,用于几次学习

DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning

论文作者

Zhang, Chi, Cai, Yujun, Lin, Guosheng, Shen, Chunhua

论文摘要

在这项工作中,我们从图像区域之间的最佳匹配的新角度开发了几个图像分类的方法。我们利用地球移动器的距离(EMD)作为度量,以计算密集图像表示之间的结构距离以确定图像相关性。 EMD在具有最小匹配成本的结构元素之间生成最佳匹配流,该元素用于计算分类的图像距离。为了产生EMD公式中元素的重要权重,我们设计了一种交叉引用机制,该机制可以有效地减轻杂物背景和较大的阶级内外观变化引起的不利影响。为了实现K-shot分类,我们建议学习一个结构化的完全连接层,该层可以将密集图像表示与EMD直接分类。基于隐式函数定理,可以将EMD作为网络插入以进行端到端训练。我们的广泛实验验证了算法的有效性,在五个广泛使用的少数几个弹药分类基准上,它的效果超过了最先进的方法,即Miniimagenet,Tieredimagenet,少数shot-cifar100(FC100),caltech-ucsd birds-200-200-2(cuf-211)(CIFAR-200-FER)(CIF)(CIF)(CIF)(CIF)(CIF)(CIF)(CIF)(CIF)(CIF)。我们还证明了我们的方法对实验中图像检索任务的有效性。

In this work, we develop methods for few-shot image classification from a new perspective of optimal matching between image regions. We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations to determine image relevance. The EMD generates the optimal matching flows between structural elements that have the minimum matching cost, which is used to calculate the image distance for classification. To generate the important weights of elements in the EMD formulation, we design a cross-reference mechanism, which can effectively alleviate the adverse impact caused by the cluttered background and large intra-class appearance variations. To implement k-shot classification, we propose to learn a structured fully connected layer that can directly classify dense image representations with the EMD. Based on the implicit function theorem, the EMD can be inserted as a layer into the network for end-to-end training. Our extensive experiments validate the effectiveness of our algorithm which outperforms state-of-the-art methods by a significant margin on five widely used few-shot classification benchmarks, namely, miniImageNet, tieredImageNet, Fewshot-CIFAR100 (FC100), Caltech-UCSD Birds-200-2011 (CUB), and CIFAR-FewShot (CIFAR-FS). We also demonstrate the effectiveness of our method on the image retrieval task in our experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源