论文标题
学习对象目标导航的分层关系
Learning hierarchical relationships for object-goal navigation
论文作者
论文摘要
直接搜索对象作为导航的一部分,对小项目构成了挑战。以对象对象关系的形式利用上下文可以有效地对目标进行分层搜索。当前的大多数方法倾向于将感觉输入直接纳入基于奖励的学习方法中,而无需了解自然环境中的对象关系,从而在跨领域中概括不佳。我们介绍了以目标驱动的导航算法为室内房间(Mjolnir)在室内导航(Mjolnir)中的内存关节层次对象学习,该导航算法考虑了目标对象之间的固有关系以及周围发生的更明显的上下文对象。在多个环境环境中进行的广泛实验表明,根据成功率(SR)和成功加权路径长度(SPL),对现有最新导航方法的$ 82.9 \%$和$ 93.5 \%$增益。我们还表明,我们的模型学会比其他算法要快得多,而不会遇到众所周知的过度拟合问题。有关补充材料和代码的更多详细信息,请访问https://sites.google.com/eng.ucsd.edu/mjolnir。
Direct search for objects as part of navigation poses a challenge for small items. Utilizing context in the form of object-object relationships enable hierarchical search for targets efficiently. Most of the current approaches tend to directly incorporate sensory input into a reward-based learning approach, without learning about object relationships in the natural environment, and thus generalize poorly across domains. We present Memory-utilized Joint hierarchical Object Learning for Navigation in Indoor Rooms (MJOLNIR), a target-driven navigation algorithm, which considers the inherent relationship between target objects, and the more salient contextual objects occurring in its surrounding. Extensive experiments conducted across multiple environment settings show an $82.9\%$ and $93.5\%$ gain over existing state-of-the-art navigation methods in terms of the success rate (SR), and success weighted by path length (SPL), respectively. We also show that our model learns to converge much faster than other algorithms, without suffering from the well-known overfitting problem. Additional details regarding the supplementary material and code are available at https://sites.google.com/eng.ucsd.edu/mjolnir.