论文标题

人物地面组织的模型,结合了本地和全球线索

A model of figure ground organization incorporating local and global cues

论文作者

Ramenahalli, Sudarshan

论文摘要

图形组织(FGO) - 在视觉场景中推断物体的空间深度顺序 - 涉及确定遮挡边界的哪一侧是数字(靠近观察者),哪些是地面的(远离观察者)。在此过程中涉及的全球提示和本地提示等全球提示和本地提示的结合。我们提出了一种以生物学动机的,饲喂前向前的计算模型,该模型融合了凸度,包围性,并行性作为全局线索和光谱各向异性(SA),T界线作为局部提示。虽然SA是以生物学上合理的方式计算的,但t-结合的包含是出于生物学动机。该模型由三个独立的特征通道,颜色,强度和方向组成,但是SA和T型仅在方向通道中引入,因为这些属性特定于对象的特征。我们研究独立添加每个本地提示的效果,并同时在没有本地提示的情况下同时添加与模型。我们使用BSDS 300图 - 地面数据集在每个边界位置的图形地面分类精度(FGCA)评估模型性能。单独添加时,每个局部提示都会在模型的FGCA上具有统计学上的显着改善,这表明其作为独立的FGO提示有用。具有两个局部提示的模型的FGCA比具有单个线索的模型高,表明SA和T-界面并非相互矛盾。与没有本地提示的模型相比,这两个本地提示的馈电模型都可以在FGCA方面取得$ \ GEQ 8.78 $%的改善。

Figure Ground Organization (FGO) -- inferring spatial depth ordering of objects in a visual scene -- involves determining which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer). A combination of global cues, like convexity, and local cues, like T-junctions are involved in this process. We present a biologically motivated, feed forward computational model of FGO incorporating convexity, surroundedness, parallelism as global cues and Spectral Anisotropy (SA), T-junctions as local cues. While SA is computed in a biologically plausible manner, the inclusion of T-Junctions is biologically motivated. The model consists of three independent feature channels, Color, Intensity and Orientation, but SA and T-Junctions are introduced only in the Orientation channel as these properties are specific to that feature of objects. We study the effect of adding each local cue independently and both of them simultaneously to the model with no local cues. We evaluate model performance based on figure-ground classification accuracy (FGCA) at every border location using the BSDS 300 figure-ground dataset. Each local cue, when added alone, gives statistically significant improvement in the FGCA of the model suggesting its usefulness as an independent FGO cue. The model with both local cues achieves higher FGCA than the models with individual cues, indicating SA and T-Junctions are not mutually contradictory. Compared to the model with no local cues, the feed-forward model with both local cues achieves $\geq 8.78$% improvement in terms of FGCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源