论文标题

部分域适应的类有条件对齐

Class Conditional Alignment for Partial Domain Adaptation

论文作者

Kheirandishfard, Mohsen, Zohrizadeh, Fariba, Kamangar, Farhad

论文摘要

对抗性适应模型已显示出将知识从标记的源数据集传输到未标记的目标数据集的重大进展。部分结构域适应(PDA)研究了源域大而多样的场景,目标标签空间是源标签空间的子集。 PDA的主要目的是确定域之间的共享类,并从这些类别中促进可转移的知识。在本文中,我们为PDA提出了一个多级对手架构。所提出的方法通过最小化新型的多级对抗损失函数,共同将边际和阶级条件分布对齐。此外,我们合并有效的正规化术语,以鼓励选择最相关的源域类别。在没有目标标签的情况下,所提出的方法能够有效地学习域不变特征表示,这反过来又可以增强目标域中的分类性能。在三个基准数据集Office-31,Office-Home和Caltech-Office上进行的全面实验证实了拟议方法在解决不同部分转移学习任务方面的有效性。

Adversarial adaptation models have demonstrated significant progress towards transferring knowledge from a labeled source dataset to an unlabeled target dataset. Partial domain adaptation (PDA) investigates the scenarios in which the source domain is large and diverse, and the target label space is a subset of the source label space. The main purpose of PDA is to identify the shared classes between the domains and promote learning transferable knowledge from these classes. In this paper, we propose a multi-class adversarial architecture for PDA. The proposed approach jointly aligns the marginal and class-conditional distributions in the shared label space by minimaxing a novel multi-class adversarial loss function. Furthermore, we incorporate effective regularization terms to encourage selecting the most relevant subset of source domain classes. In the absence of target labels, the proposed approach is able to effectively learn domain-invariant feature representations, which in turn can enhance the classification performance in the target domain. Comprehensive experiments on three benchmark datasets Office-31, Office-Home, and Caltech-Office corroborate the effectiveness of the proposed approach in addressing different partial transfer learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源