论文标题

爆炸和kadets不平等的多台面概括

A multi-plank generalization of the Bang and Kadets inequalities

论文作者

Balitskiy, Alexey

论文摘要

如果凸件$ k \ subset \ mathbb {r}^n $由凸面的结合$ c_1,\ ldots,c_n $涵盖,则可以问多个子辅助问题。两个经典结果将宽度的亚加粘性(两个平行的超平面之间的最小距离夹心$ k $)和inradius($ k $中包含的球的最大半径):$ c_i $的宽度的总和至少是$ k $的宽度(这是$ k $的宽度(这是$ k $)(这是$ plank theore $ ume $ ume $ sump thig thigi $ sump aump yis th guger and th gungi $ cum aump)至少$ k $的inradius(这是由于Vladimir Kadets造成的)。 我们调整了这些结果的现有证据,以证明某些广义非凸“多板”的覆盖率定理。这种方法的一种推论是一个不平等的家族,在Bang定理和Kadets定理之间进行了插值。其他推论还包括让人联想到达文波特的结果 - 诸如以下问题,例如:如果在飞机上$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n unitk a inradius a $ nradius atradius at inradius at inradius at rac { \sinπ/m} $。

If a convex body $K \subset \mathbb{R}^n$ is covered by the union of convex bodies $C_1, \ldots, C_N$, multiple subadditivity questions can be asked. Two classical results regard the subadditivity of the width (the smallest distance between two parallel hyperplanes that sandwich $K$) and the inradius (the largest radius of a ball contained in $K$): the sum of the widths of the $C_i$ is at least the width of $K$ (this is the plank theorem of Thoger Bang), and the sum of the inradii of the $C_i$ is at least the inradius of $K$ (this is due to Vladimir Kadets). We adapt the existing proofs of these results to prove a theorem on coverings by certain generalized non-convex "multi-planks". One corollary of this approach is a family of inequalities interpolating between Bang's theorem and Kadets's theorem. Other corollaries include results reminiscent of the Davenport--Alexander problem, such as the following: if an $m$-slice pizza cutter (that is, the union of $m$ equiangular rays in the plane with the same endpoint) in applied $N$ times to the unit disk, then there will be a piece of the partition of inradius at least $\frac{\sin π/m}{N + \sin π/m}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源