论文标题
微腔孤子的量子扩散
Quantum diffusion of microcavity solitons
论文作者
论文摘要
在理想的光学微腔中,相干泵浦(Kerr)的孤子有望进行随机量子运动,从而决定孤子微核的应用中的基本性能限制。在这里,通过实验研究了这种扩散运动及其对Kerr Soliton正时抖动的影响。通常隐藏在技术噪声贡献的下方,量子限制通过测量反向传播的孤子来辨别。它们的相对运动仅具有弱相互作用,还提供了极好的通用技术抑制技术噪声。这与共同传播的孤子形成鲜明对比,后者被发现具有相对的时机抖动远低于单个孤子的量子限制,这是由于强烈的相互相关性的。在理论和实验之间发现了良好的一致性。结果确定了孤子微核心中定时抖动的基本限制,并提供了有关多苏里顿物理学的新见解
Coherently-pumped (Kerr) solitons in an ideal optical microcavity are expected to undergo random quantum motion that determines fundamental performance limits in applications of soliton microcombs. Here, this diffusive motion and its impact on Kerr soliton timing jitter is studied experimentally. Typically hidden below technical noise contributions, the quantum limit is discerned by measuring counter-propagating solitons. Their relative motion features only weak interactions and also presents excellent common mode suppression of technical noise. This is in strong contrast to co-propagating solitons which are found to have relative timing jitter well below the quantum limit of a single soliton on account of strong mutual motion correlation. Good agreement is found between theory and experiment. The results establish the fundamental limits to timing jitter in soliton microcombs and provide new insights on multi-soliton physics