论文标题

牛顿的最小阻力问题中的鼻子拉伸方法

Method of nose stretching in Newton's problem of minimal resistance

论文作者

Plakhov, Alexander

论文摘要

我们考虑问题$ \ inf \ big \ {\ int \!\!\int_Ω(1 + | \ nabla u(x,x,y)|^2)^{ - 1} dx dy:\ text {function} fartion} fortial} u function} u:ω\ to \ mathbb {r} \ r} \ r} \ text text { }(x,y)\ inω= \ {(x,y):x^2 + y^2 \ le 1 \} \,\ big \} $(牛顿的问题)及其概括。在纸上\ cite {brfk}中,证明,如果解决方案$ u $为$ c^2 $,则在开放式套装中$ \ mathcal {u} \ subsetω$,则$ \ det d^2u = 0 $ in $ \ nathcal {u} $。遵循该图$(u)\ rfloor_ \ mathcal {u} $不包含$ u $的子图的极端点。 在本文中,我们证明结果有所更强。也就是说,存在具有以下属性的解决方案$ u $。如果$ u $是$ c^1 $在打开集中的$ \ mathcal {u} \subsetΩ$,则Graph $(u \ rfloor_ \ Mathcal {u})$不包含凸面的极端点$ C_U = \ = \ {(x,y,z) \} $。结果,我们有$ c_u = \ text {\ rm cons}(\ overline {\ text {\ rm sing $ c_u $}})$,其中sing $ c_u $表示$ \ partial c_u $的单数点。我们证明了广义牛顿问题的类似结果。

We consider the problem $\inf\big\{ \int\!\!\int_Ω(1 + |\nabla u(x,y)|^2)^{-1} dx dy : \text{ the function } u : Ω\to \mathbb{R} \text{ is concave and } 0 \le u(x,y) \le M \text{ for all } (x,y) \in Ω=\{ (x,y): x^2 + y^2 \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper \cite{BrFK} it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset Ω$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset Ω$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,y,z) :\, (x,y) \in Ω,\ 0 \le z \le u(x,y) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalized Newton's problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源