论文标题

扭转的宇宙学特征以及如何区分扭力和黑暗部门

Cosmological signatures of torsion and how to distinguish torsion from the dark sector

论文作者

Bolejko, Krzysztof, Cinus, Matteo, Roukema, Boudewijn F.

论文摘要

扭转是一般相对论的非利马尼亚几何扩展,包括物质的旋转和时空的扭曲。文献中已经考虑了具有扭转的宇宙学模型,以解决早期(高红移$ z $)或当今宇宙的问题。本文的重点是可区分的扭转的观察性特征,而伪里曼尼亚的几何形状中的标量场则无法解释。我们表明,当存在扭转时,角直径距离之间的宇宙二元性关系,$ d _ {\ mathrm a} $和光度距离,$ d _ {\ mathrm l} $。我们展示了参数$η= d _ {\ mathrm l}/[d _ {d _ {\ mathrm a}(1+z)^2] -1 $如何链接到扭转以及不同形式的扭转如何导致$η$ $η$,$η_0z $η_0z/z $η_0z 0 (1+Z)$。我们还表明,在低红移数据中可以看到扭转的效果,从而在基于超新星的$ H_0 $测量中引起偏见。我们还表明,扭转会影响Clarkson-Bassett-Lu(CBL)函数$ {\ CAL C}(Z)= 1 + H^2(D d''' - d'^2) + H H h'd D'$,其中$ d $是横向com的距离。如果从光度距离推断出$ d $,则一般非零扭转模型,$ {\ cal c}(z)(z)\ ne 0 $。对于伪里曼尼亚的几何形状,Friedmann-Lemaitre-Robertson-Walker(FLRW)Metric具有$ {\ cal c}(z)(z)\ equiv 0 $;因此,CBL功能的测量可以提供另一个扭转的诊断。

Torsion is a non-Riemannian geometrical extension of general relativity that allows including the spin of matter and the twisting of spacetime. Cosmological models with torsion have been considered in the literature to solve problems of either the very early (high redshift $z$) or the present-day Universe. This paper focuses on distinguishable observational signatures of torsion that could not be otherwise explained with a scalar field in pseudo-Riemannian geometry. We show that when torsion is present, the cosmic duality relation between the angular diameter distance, $D_{\mathrm A}$, and the luminosity distance, $D_{\mathrm L}$, is broken. We show how the deviation described by the parameter $η= D_{\mathrm L}/[ D_{\mathrm A}(1+z)^2] -1 $ is linked to torsion and how different forms of torsion lead to special-case parametrisations of $η$, including $η_0 z$, $η_0 z/(1+z)$, and $η_0 \ln (1+z)$. We also show that the effects of torsion could be visible in low-redshift data, inducing biases in supernovae-based $H_0$ measurements. We also show that torsion can impact the Clarkson-Bassett-Lu (CBL) function ${\cal C}(z) = 1 + H^2 (D D'' - D'^2) + H H' D D'$, where $D$ is the transverse comoving distance. If $D$ is inferred from the luminosity distance, then, in general non-zero torsion models, ${\cal C}(z) \ne 0$. For pseudo-Riemannian geometry, the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric has ${\cal C}(z) \equiv 0$; thus, measurement of the CBL function could provide another diagnostic of torsion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源