论文标题

锦标赛的分解性和共同座位

Decomposability and co-modular indices of tournaments

论文作者

Belkhechine, Houmem, Salha, Cherifa Ben

论文摘要

给定锦标赛$ t $,$ t $的一个模块是$ v(t)$的子集$ x $,因此,对于$ x,y \ in x $ in x $和$ v \ in v(t)\ setminus x $,$(x,x,v)\ in(t)$ in A(y,v)$ in(y,v)\ in(y,v)\ in(y,v)\ in(t)$。 $ t $的琐碎模块是$ \ emptyset $,$ \ {u \} $ $(u \ in v(t))$和$ v(t)$。如果其所有模块都很微不足道,那么比赛$ t $都是不可分解的。否则它是可分解的。 $δ(t)$表示的$ t $的可分解性指数是$ t $的最小数量的$ t $,必须逆转以使$ t $不可兼容。第一作者指出,对于$ n \ geq 5 $,我们有$δ(n)= \ left \ lceil \ frac {n+1} {4} {4} \ right \ rceil $,其中$δ(n)$是$ t $ t $ n $ n $ vertices的$δ(n)$。 In this paper we prove this conjecture by introducing the co-modular index of a tournament $T$, denoted by $Δ(T)$, as the largest number of disjoint co-modules of $T$, where a co-module of $T$ is a subset $M$ of $V(T)$ such that $M$ or $V(T) \setminus M$ is a nontrivial module of $T$.我们证明,对于$ n \ geq 3 $,我们有$δ(n)= \ left \ lceil \ frac {n+1} {2} {2} \ right \ rceil $,其中$δ(n)$是$ t $ t $ n $ n $ vertices的$δ(n)$。我们的主要结果是以下两个指数之间的紧密关系:对于每个锦标赛$ t $,至少$ 5 $顶点,我们都有$δ(t)= \ left \ lceil \ frac \ frac {δ(t)} {2} {2} {2} \ right \ rceil $。结果,我们获得了$δ(n)= \ left \ lceil \ frac {δ(n)} {2} {2} {2} {2} \ right \ rceil = \ left \ left \ lceil \ frac {n+1} {n+1} {4} {4} {4} {4} {4} {4} \ right \ right \ rceil $ for $ n \ geq for $ n \ geq 5 $,我们回答了一些相关问题。

Given a tournament $T$, a module of $T$ is a subset $X$ of $V(T)$ such that for $x, y\in X$ and $v\in V(T)\setminus X$, $(x,v)\in A(T)$ if and only if $(y,v)\in A(T)$. The trivial modules of $T$ are $\emptyset$, $\{u\}$ $(u\in V(T))$ and $V(T)$. The tournament $T$ is indecomposable if all its modules are trivial; otherwise it is decomposable. The decomposability index of $T$, denoted by $δ(T)$, is the smallest number of arcs of $T$ that must be reversed to make $T$ indecomposable. The first author conjectured that for $n \geq 5$, we have $δ(n) = \left\lceil \frac{n+1}{4} \right\rceil$, where $δ(n)$ is the maximum of $δ(T)$ over the tournaments $T$ with $n$ vertices. In this paper we prove this conjecture by introducing the co-modular index of a tournament $T$, denoted by $Δ(T)$, as the largest number of disjoint co-modules of $T$, where a co-module of $T$ is a subset $M$ of $V(T)$ such that $M$ or $V(T) \setminus M$ is a nontrivial module of $T$. We prove that for $n \geq 3$, we have $Δ(n) = \left\lceil \frac{n+1}{2} \right\rceil$, where $Δ(n)$ is the maximum of $Δ(T)$ over the tournaments $T$ with $n$ vertices. Our main result is the following close relationship between the above two indices: for every tournament $T$ with at least $5$ vertices, we have $δ(T) = \left\lceil \frac{Δ(T)}{2} \right\rceil$. As a consequence, we obtain $δ(n) = \left\lceil \frac{Δ(n)}{2} \right\rceil = \left\lceil \frac{n+1}{4} \right\rceil$ for $n \geq 5$, and we answer some further related questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源