论文标题

Tomaszewski关于随机签名的总和的问题,重新审视

Tomaszewski's problem on randomly signed sums, revisited

论文作者

Boppana, Ravi B., Hendriks, Harrie, van Zuijlen, Martien C. A.

论文摘要

令$ v_1 $,$ v_2 $,...,$ v_n $是实际数字,其正方形加起来为1。考虑$ 2^n $签名的$ s $ s = \ sum \ sum \ pm \ pm v_i $的$ 2^n $。 Boppana和Holzman(2017)证明,其中至少有13/32满足$ | S | \ le 1 $。在这里,我们将它们的限制提高到$ 0.427685 $。

Let $v_1$, $v_2$, ..., $v_n$ be real numbers whose squares add up to 1. Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$. Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$. Here we improve their bound to $0.427685$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源