论文标题
Tomaszewski关于随机签名的总和的问题,重新审视
Tomaszewski's problem on randomly signed sums, revisited
论文作者
论文摘要
令$ v_1 $,$ v_2 $,...,$ v_n $是实际数字,其正方形加起来为1。考虑$ 2^n $签名的$ s $ s = \ sum \ sum \ pm \ pm v_i $的$ 2^n $。 Boppana和Holzman(2017)证明,其中至少有13/32满足$ | S | \ le 1 $。在这里,我们将它们的限制提高到$ 0.427685 $。
Let $v_1$, $v_2$, ..., $v_n$ be real numbers whose squares add up to 1. Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$. Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$. Here we improve their bound to $0.427685$.