论文标题

可解决的标准,用于任何准备和测量场景的上下文性

Solvable Criterion for the Contextuality of any Prepare-and-Measure Scenario

论文作者

Gitton, Victor, Woods, Mischa P.

论文摘要

从任意的量子状态和测量值集开始,称为准备和测量场景,这是与准备和量化方案相关的量子统计的操作非秘密本体论模型。在操作上,非秘密本体论模型与标准的Spekkens非秘密本体论模型相吻合,用于层析上完整的场景,同时涵盖了非图形完整的案例,并具有新的降低空间的概念,我们遵循了非上下文性的指导原则。数学标准称为单位可分离性,被提出为相关的经典性标准 - 该名称的灵感来自量子状态可分离性的通常概念。使用此标准,我们在Ontic空间的基数上得出了一个新的上限。然后,我们将单位可分离性标准重新铸造为(可能是无限的)线性约束,从中,我们获得了两个单独的算法测试层次结构,以见证非经典性或证明场景的经典性。最后,我们在广义概率理论的框架中重新制定了结果,并讨论了这种理论中简单性的含义。

Starting from arbitrary sets of quantum states and measurements, referred to as the prepare-and-measure scenario, an operationally noncontextual ontological model of the quantum statistics associated with the prepare-and-measure scenario is constructed. The operationally noncontextual ontological model coincides with standard Spekkens noncontextual ontological models for tomographically complete scenarios, while covering the non-tomographically complete case with a new notion of a reduced space, which we motivate following the guiding principles of noncontextuality. A mathematical criterion, called unit separability, is formulated as the relevant classicality criterion -- the name is inspired by the usual notion of quantum state separability. Using this criterion, we derive a new upper bound on the cardinality of the ontic space. Then, we recast the unit separability criterion as a (possibly infinite) set of linear constraints, from which we obtain two separate hierarchies of algorithmic tests to witness the non-classicality or certify the classicality of a scenario. Finally, we reformulate our results in the framework of generalized probabilistic theories and discuss the implications for simplex-embeddability in such theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源