论文标题

初始化航空公司乘员配对的优化,用于大规模复杂飞行网络

On Initializing Airline Crew Pairing Optimization for Large-scale Complex Flight Networks

论文作者

Aggarwal, Divyam, Saxena, Dhish Kumar, Bäck, Thomas, Emmerich, Michael

论文摘要

船员配对优化(CPO)对于任何航空公司都至关重要,因为其机组人员的运营成本是第二大燃料成本。 CPO的目的是生成一组覆盖飞行程序的飞行序列(机组人员配对),同时满足了几个合法性的限制。对于大规模的复杂飞行网络,可以实现十亿多法定配对(变量),使他们的离线枚举变得棘手,并详尽地搜索其最低成本的完整飞行覆盖式子集不切实际。即使生成了初始可行的解决方案(IFS:一组可管理的合法配对涵盖所有航班),随后可以优化这是一个困难(NP完整)问题。但是,作为一个较大项目的一部分,作者开发了船员配对优化器(Aircrop),但本文致力于通过基于分裂和整数编程的新型启发式方法来关注IFS生成。对于GE Aviation提供的现实世界中大而复杂的飞行网络数据集(包括超过3200架飞行和15个机组人员),拟议的启发式措施显示出比另一种最先进的方法的速度提高了十倍。前所未有的是,本文对IFS-COST对最终(优化)溶液成本的影响进行了实证研究,这表明过于低的IFS-IFS-COST并不一定意味着Aircrop的融合甚至更低的成本是优化解决方案的较低成本。

Crew pairing optimization (CPO) is critically important for any airline, since its crew operating costs are second-largest, next to the fuel-cost. CPO aims at generating a set of flight sequences (crew pairings) covering a flight-schedule, at minimum-cost, while satisfying several legality constraints. For large-scale complex flight networks, billion-plus legal pairings (variables) are possible, rendering their offline enumeration intractable and an exhaustive search for their minimum-cost full flight-coverage subset impractical. Even generating an initial feasible solution (IFS: a manageable set of legal pairings covering all flights), which could be subsequently optimized is a difficult (NP-complete) problem. Though, as part of a larger project the authors have developed a crew pairing optimizer (AirCROP), this paper dedicatedly focuses on IFS-generation through a novel heuristic based on divide-and-cover strategy and Integer Programming. For real-world large and complex flight network datasets (including over 3200 flights and 15 crew bases) provided by GE Aviation, the proposed heuristic shows upto a ten-fold speed improvement over another state-of-the-art approach. Unprecedentedly, this paper presents an empirical investigation of the impact of IFS-cost on the final (optimized) solution-cost, revealing that too low an IFS-cost does not necessarily imply faster convergence for AirCROP or even lower cost for the optimized solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源