论文标题
高电量个体胶体量子点中单光子发射的电控制
Electrical control of single-photon emission in highly-charged individual colloidal quantum dots
论文作者
论文摘要
电子转移到单个量子点可以促进带有增强的重组途径和寿命减少的带电激子的形成。仅观察并利用了一个或两次额外费用的激子,以进行非常有效的激光或单个量子点LED。在这里,通过对单个巨型壳CDSE/CDS量子点进行的室温时间分辨实验,我们显示了含有超过十二个电子和一个孔的高电力激素的电化学形成。我们报告了对强度闪烁的控制,以及对量子点光动力学的确定性操纵,观察到衰减速率增加了210倍,伴随着发射强度的12倍降低,同时保留了单光子发射特性。这些结果为对电荷状态的确定性控制铺平了道路,以及用于基于胶体量子点的经典和量子通信技术的室温衰减率工程。
Electron transfer to an individual quantum dot promotes the formation of charged excitons with enhanced recombination pathways and reduced lifetimes. Excitons with only one or two extra charges have been observed and exploited for very efficient lasing or single quantum dot LEDs. Here, by room-temperature time-resolved experiments on individual giant-shell CdSe/CdS quantum dots, we show the electrochemical formation of highly charged excitons containing more than twelve electrons and one hole. We report the control over intensity blinking, along with a deterministic manipulation of quantum dot photodynamics, with an observed 210-fold increase of the decay rate, accompanied by 12-fold decrease of the emission intensity, while preserving single-photon emission characteristics. These results pave the way for deterministic control over the charge state, and room-temperature decay-rate engineering for colloidal quantum dot-based classical and quantum communication technologies.