论文标题

空间Tweedie指数分散模型

Spatial Tweedie exponential dispersion models

论文作者

Halder, Aritra, Mohammed, Shariq, Chen, Kun, Dey, Dipak K.

论文摘要

本文提出了一个通用建模框架,该框架允许在单个协方差级别和空间参考上进行不确定性定量,并使用双重概括线性模型(DGLM)运行。 DGLM提供了一个通用的建模框架,允许分散以链接线性方式依赖于所选协变量。我们专注于使用Tweedie指数分散模型,同时考虑DGLM,原因是它们最近广泛用于建模混合响应类型。采用基于正则化的方法,我们建议从非指导图中得出的一类灵活的凸惩罚,以促进对未观察到的空间效应的估计。通过提出一种协调下降算法来表达发展,该算法通过估计各自模型系数的估计,同时估计未观察到的空间效应,从而共同解释了平均值和分散的变异。进行的模拟表明,提出的方法优于竞争对手,例如山脊和未覆盖版本。最后,在2008年,美国康涅狄格州的汽车碰撞引起的汽车碰撞引起的保险损失时,考虑了实际数据应用程序。

This paper proposes a general modeling framework that allows for uncertainty quantification at the individual covariate level and spatial referencing, operating withing a double generalized linear model (DGLM). DGLMs provide a general modeling framework allowing dispersion to depend in a link-linear fashion on chosen covariates. We focus on working with Tweedie exponential dispersion models while considering DGLMs, the reason being their recent wide-spread use for modeling mixed response types. Adopting a regularization based approach, we suggest a class of flexible convex penalties derived from an un-directed graph that facilitates estimation of the unobserved spatial effect. Developments are concisely showcased by proposing a co-ordinate descent algorithm that jointly explains variation from covariates in mean and dispersion through estimation of respective model coefficients while estimating the unobserved spatial effect. Simulations performed show that proposed approach is superior to competitors like the ridge and un-penalized versions. Finally, a real data application is considered while modeling insurance losses arising from automobile collisions in the state of Connecticut, USA for the year 2008.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源