论文标题
中间的对称构造Anyon和外邦人统计之间的转型
Intermediate symmetric construction of transformation between anyon and Gentile statistics
论文作者
论文摘要
Gentile Statistics描述了职业编号表示中的分数统计系统。 Anyon统计数据在绕组数字表示中研究了这些系统。它们俩都是Bose-Einstein和Fermi-Dirac统计数据之间的中间统计。外邦统计数据的第二个量化显示了很多优势。根据波函数的对称要求,我们给出了任何人和外邦人统计之间转化的一般结构。换句话说,我们以简单的方式介绍了Anyons的第二个量化形式。还讨论了第二个量化操作员,相干状态和浆果阶段的基本关系。
Gentile statistics describes fractional statistical systems in the occupation number representation. Anyon statistics researches those systems in the winding number representation. Both of them are intermediate statistics between Bose-Einstein and Fermi-Dirac statistics. The second quantization of Gentile statistics shows a lot of advantages. According to the symmetry requirement of the wave function, we give the general construction of transformation between anyon and Gentile statistics. In other words, we introduce the second quantization form of anyons in a easy way. Basic relations of second quantization operators, the coherent state and Berry phase are also discussed.