论文标题

图像产生的语义金字塔

Semantic Pyramid for Image Generation

论文作者

Shocher, Assaf, Gandelsman, Yossi, Mosseri, Inbar, Yarom, Michal, Irani, Michal, Freeman, William T., Dekel, Tali

论文摘要

我们提出了一种基于GAN的新型模型,该模型利用了通过预训练的分类模型学到的深度特征的空间。受经典图像金字塔表示的启发,我们将模型构建为语义一代金字塔,这是一个层次结构框架,它利用了封装在如此深的特征中的语义信息的连续性;从精细功能中包含的低级别信息到高级别的范围,更深的功能中包含的语义信息。更具体地说,给定从参考图像提取的一组功能,我们的模型生成了各种图像样本,每个图像样本都在分类模型的每个语义级别都具有匹配的特征。我们证明,我们的模型会导致多功能且灵活的框架,该框架可用于各种经典和新颖的图像生成任务。其中包括:生成与参考图像具有可控语义相似性的图像,以及不同的操纵任务,例如语义控制的授课和合成;所有这些都以相同的模型实现,没有进一步的培训。

We present a novel GAN-based model that utilizes the space of deep features learned by a pre-trained classification model. Inspired by classical image pyramid representations, we construct our model as a Semantic Generation Pyramid -- a hierarchical framework which leverages the continuum of semantic information encapsulated in such deep features; this ranges from low level information contained in fine features to high level, semantic information contained in deeper features. More specifically, given a set of features extracted from a reference image, our model generates diverse image samples, each with matching features at each semantic level of the classification model. We demonstrate that our model results in a versatile and flexible framework that can be used in various classic and novel image generation tasks. These include: generating images with a controllable extent of semantic similarity to a reference image, and different manipulation tasks such as semantically-controlled inpainting and compositing; all achieved with the same model, with no further training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源