论文标题

电池能量存储系统的S矢量控制:定义和应用

s-Vector Control of Battery Energy Storage System: Definition and Application

论文作者

Yuan, Zhao

论文摘要

我们通过在P-Q平面中使用复杂的功率向量来量化电池能量存储系统(BESS)的可行操作区域并找到最佳的功率设定点解决方案,从而给出了S矢量控制的定义。 S-Vector控制功能是避免使用昂贵的优化求解器在线求解优化模型,这也是实时控制中的执行时间瓶颈。 S矢量控制的优点是快速,稳定的计算效率。我们验证了基于S的BES的实时控制器,以提供频率响应和电压支持,作为电网的辅助服务。目的是最大化BESS资产的效用。我们将DC-AC转换器的动态功能曲线和电池电池的安全要求作为控制系统的约束。最初的功率设定点是根据传统的下垂控制方法获得的。基于S-Vector控制,提出了快速优化解决方案算法以找到最佳的功率设定点并保证安全性。根据我们在EPFL校园的720 kVA / 560 kWh bess中的实验验证,我们实现了100 ms的刷新实时控制环。作为基准,使用优化求解器需要200毫秒来更新实时控制循环。

We give the definition of s-Vector control by using the complex power vector in the p-q plane to quantify the feasible operational region of battery energy storage system (BESS) and to find the optimal power set-point solution. The s-Vector control features in the avoidance of using costly optimization solvers to solve optimization models online which is also an execution time bottleneck in real-time control. The advantages of s-Vector control are fast and stable computational efficiency. We validate a s-Vector based real-time controller of BESS to provide frequency response and voltage support as ancillary services for the power grid. The objective is to maximize the utility of the BESS asset. We formulate the dynamic capability curve of the DC-AC converter and the security requirements of the battery cells as constrains of the control system. The initial power set-points are obtained based on the traditional droop control approach. Based on s-Vector control, a fast optimization solution algorithm is proposed to find the optimal power set-point and guarantee the security. According to the experimental validation in our 720 kVA / 560 kWh BESS on EPFL campus, we achieve 100 ms of refreshing the real-time control loop. As a benchmark, using optimization solver requires 200 ms to update the real-time control loop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源