论文标题

超高效的转移学习和元更新进行跨主题脑电图分类

Ultra Efficient Transfer Learning with Meta Update for Cross Subject EEG Classification

论文作者

Duan, Tiehang, Chauhan, Mihir, Shaikh, Mohammad Abuzar, Chu, Jun, Srihari, Sargur

论文摘要

脑电图(EEG)信号的模式在不同的受试者之间显着不同,并以1)有效地使学习分类器适应新受试者,对EEG分类器提出挑战,2)在适应后保留对已知受试者的知识。我们提出了一种有效的转移学习方法,称为元更新策略(MUPS-EEG),以跨不同主题进行连续的脑电图分类。该模型通过META更新学习有效的表示形式,该表示可以加速对新主题的适应,并同时减轻对先前主题的知识的忘记。所提出的机制源自元学习和工作1)找到特征表示,该特征表示非常适合不同受试者,2)最大化损失功能的灵敏度,以便对新受试者进行快速适应。该方法可以应用于所有面向学习的模型。在两个公共数据集上进行的广泛实验证明了所提出的模型的有效性,在适应新主题和保留学习学科的知识方面,优于当前的艺术状态。

The pattern of Electroencephalogram (EEG) signal differs significantly across different subjects, and poses challenge for EEG classifiers in terms of 1) effectively adapting a learned classifier onto a new subject, 2) retaining knowledge of known subjects after the adaptation. We propose an efficient transfer learning method, named Meta UPdate Strategy (MUPS-EEG), for continuous EEG classification across different subjects. The model learns effective representations with meta update which accelerates adaptation on new subject and mitigate forgetting of knowledge on previous subjects at the same time. The proposed mechanism originates from meta learning and works to 1) find feature representation that is broadly suitable for different subjects, 2) maximizes sensitivity of loss function for fast adaptation on new subject. The method can be applied to all deep learning oriented models. Extensive experiments on two public datasets demonstrate the effectiveness of the proposed model, outperforming current state of the arts by a large margin in terms of both adapting on new subject and retain knowledge of learned subjects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源