论文标题

极化作为浮雕工程的调谐参数:蜂窝,正方形和三角形莫特绝缘子中的磁性

Polarization as a tuning parameter for Floquet engineering: magnetism in the honeycomb, square, and triangular Mott insulators

论文作者

Quito, V. L., Flint, Rebecca

论文摘要

磁交换耦合可以通过耦合到周期光的耦合来调整,在该光线通常会变化频率和振幅:一种称为Floquet Engineering的过程。光的极化也很重要,在本文中,我们展示了不同的极化(包括几种类型的非铝光)如何以不同的方式调整交换耦合。例如,使用非偏振光,可以在不破坏时间反转或任何晶格对称性的情况下调整材料。为了一般说明这些效果,我们考虑了蜂窝,方形和三角形晶格上半填充的单频哈伯德模型。我们将有效的Heisenberg自旋模型推导到扰动理论中的第四阶,以进行任意固定的极化,并将几种类型的非偏光光线保留,以保留时间反转和晶格对称性。将这些模型耦合到周期性的光调,第二,第二和第三个邻居交换耦合以及正方形和三角形晶格上的环交换项。循环极化的光引发蜂窝和三角形晶格的手性场,这有利于非旋转磁力和潜在的手性自旋液体。我们讨论如何在不诱导加热的情况下最大化耦合的增强。

Magnetic exchange couplings can be tuned by coupling to periodic light, where the frequency and amplitude are typically varied: a process known as Floquet engineering. The polarization of the light is also important, and in this paper, we show how different polarizations, including several types of unpolarized light, can tune the exchange couplings in distinct ways. Using unpolarized light, for example, it is possible to tune the material without breaking either time-reversal or any lattice symmetries. To illustrate these effects generically, we consider single-band Hubbard models at half-filling on the honeycomb, square and triangular lattices. We derive the effective Heisenberg spin models to fourth order in perturbation theory for arbitrary fixed polarizations, and several types of unpolarized light that preserve time-reversal and lattice symmetries. Coupling these models to periodic light tunes first, second and third neighbor exchange couplings, as well as ring exchange terms on the square and triangular lattices. Circularly polarized light induces chiral fields for the honeycomb and triangular lattices, which favors non-coplanar magnetism and potential chiral spin liquids. We discuss how to maximize the enhancement of the couplings without inducing heating.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源