论文标题
使用GEO2DR学习图形的分布式表示
Learning distributed representations of graphs with Geo2DR
论文作者
论文摘要
我们提出GEO2DR(几何形状到分布式表示形式),这是GPU准备好的Python库,用于使用离散的子结构模式和神经语言模型,用于在图形结构数据上进行无监督学习。它包含Pytorch中流行的图分解算法和神经语言模型的有效实现,可以使用分布式假设组合以学习图表的表示。此外,GEO2DR带有一般数据处理和加载方法,可以在神经语言模型的培训中大大加速。通过此,我们提供了一组模块化的工具和方法,以快速构建能够学习图形分布式表示的系统。这对于复制现有方法,修改或开发全新方法很有用。本文介绍了GEO2DR库,并对在广泛使用的图形分类基准中使用GEO2DR重新实现现有方法进行了全面的比较分析。 GEO2DR以已发表的方法和与其他可用于分发语言建模有用的库的互操作性显示了结果的高可重复性。
We present Geo2DR (Geometric to Distributed Representations), a GPU ready Python library for unsupervised learning on graph-structured data using discrete substructure patterns and neural language models. It contains efficient implementations of popular graph decomposition algorithms and neural language models in PyTorch which can be combined to learn representations of graphs using the distributive hypothesis. Furthermore, Geo2DR comes with general data processing and loading methods to bring substantial speed-up in the training of the neural language models. Through this we provide a modular set of tools and methods to quickly construct systems capable of learning distributed representations of graphs. This is useful for replication of existing methods, modification, or development of completely new methods. This paper serves to present the Geo2DR library and perform a comprehensive comparative analysis of existing methods re-implemented using Geo2DR across widely used graph classification benchmarks. Geo2DR displays a high reproducibility of results in published methods and interoperability with other libraries useful for distributive language modelling.