论文标题

引入离群值:一种稀疏的子空间聚类方法来学习鼠标超声声音的字典

Bringing in the outliers: A sparse subspace clustering approach to learn a dictionary of mouse ultrasonic vocalizations

论文作者

Wang, Jiaxi, Mundnich, Karel, Knoll, Allison T., Levitt, Pat, Narayanan, Shrikanth

论文摘要

在社交互动期间,小鼠在超声波范围内发声。这些发声用于神经科学和临床研究,以利用复杂的行为和状态。传统上,对这些超声波发声(USV)的分析一直是一种手动过程,它容易出现错误和人类偏见,并且无法扩展大规模分析。我们提出了一种新方法,以基于两步光谱聚类方法自动创建USV的字典,在此我们将USV集将其分为Inlier and Eutlllyllallellallallellallellallal的数据集。这种方法是由稀疏子空间与异常值的稀疏子空间聚类的降解性能所激发的。我们将光谱群集应用于Inlier数据集,然后找到异常值的簇。我们提出了定量和定性绩效指标,以评估我们的方法在没有地面真相的情况下。我们的方法在所有提出的性能度量中基于K-均值和光谱聚类的两个基准的表现优于两个基准,显示簇之间的距离更大,簇之间的变异性更高。

Mice vocalize in the ultrasonic range during social interactions. These vocalizations are used in neuroscience and clinical studies to tap into complex behaviors and states. The analysis of these ultrasonic vocalizations (USVs) has been traditionally a manual process, which is prone to errors and human bias, and is not scalable to large scale analysis. We propose a new method to automatically create a dictionary of USVs based on a two-step spectral clustering approach, where we split the set of USVs into inlier and outlier data sets. This approach is motivated by the known degrading performance of sparse subspace clustering with outliers. We apply spectral clustering to the inlier data set and later find the clusters for the outliers. We propose quantitative and qualitative performance measures to evaluate our method in this setting, where there is no ground truth. Our approach outperforms two baselines based on k-means and spectral clustering in all of the proposed performance measures, showing greater distances between clusters and more variability between clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源