论文标题

通过耦合气象站记录和最大稳定过程的合奏预测,对大降水的空间建模

Spatial Modeling of Heavy Precipitation by Coupling Weather Station Recordings and Ensemble Forecasts with Max-Stable Processes

论文作者

Oesting, Marco, Naveau, Philippe

论文摘要

由于物理现象复杂,很难在空间上进行大降雨事件的分布。基于物理的数值模型通常可以提供物理上连贯的空间模式,但可能会错过一些重要的降水特征,例如大降雨强度。但是,在地面气象站的测量值是供应适当的降雨强度,但是大多数国家天气记录网络通常在空间上太稀疏,无法充分捕获降雨模式。为了在这两种信息中带来最好的信息,气候学家和水文学家一直在寻找可以有效合并不同类型的降雨数据的模型。一个固有的困难是捕获降雨最大值之间适当的多元依赖性结构。为此,多元极端价值理论提出了最大稳定过程的使用。这样的过程可以通过由泊松点过程加权的隐藏随机过程的独立副本的最大线性组合来表示。在实践中,这种隐藏过程的选择是非平凡的,尤其是在手头的空间数据中存在各向异性,非平稳性和掘金效应的情况下。通过将法国国家气象局(Météo-france)与本地观察结果结合的预测集合数据,我们构建和比较了不同类型的数据驱动的最大稳定过程,这些过程在参数上是简单的,易于模拟且能够复制掘金效应和空间非机构的非基础效应。我们还将我们的新方法与来自空间极值理论(例如棕色刺激过程)的经典方法进行了比较。

Due to complex physical phenomena, the distribution of heavy rainfall events is difficult to model spatially. Physically based numerical models can often provide physically coherent spatial patterns, but may miss some important precipitation features like heavy rainfall intensities. Measurements at ground-based weather stations, however, supply adequate rainfall intensities, but most national weather recording networks are often spatially too sparse to capture rainfall patterns adequately. To bring the best out of these two sources of information, climatologists and hydrologists have been seeking models that can efficiently merge different types of rainfall data. One inherent difficulty is to capture the appropriate multivariate dependence structure among rainfall maxima. For this purpose, multivariate extreme value theory suggests the use of a max-stable process. Such a process can be represented by a max-linear combination of independent copies of a hidden stochastic process weighted by a Poisson point process. In practice, the choice of this hidden process is non-trivial, especially if anisotropy, non-stationarity and nugget effects are present in the spatial data at hand. By coupling forecast ensemble data from the French national weather service (Météo-France) with local observations, we construct and compare different types of data driven max-stable processes that are parsimonious in parameters, easy to simulate and capable of reproducing nugget effects and spatial non-stationarities. We also compare our new method with classical approaches from spatial extreme value theory such as Brown-Resnick processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源