论文标题
非谐,未阻塞,古典振荡器的能量分区
Energy partition for anharmonic, undamped, classical oscillators
论文作者
论文摘要
使用随机方法,用于非谐,未阻塞(无摩擦)的平均动力学和势能的一般公式,得出了经典的振荡器。可以证明,对于$ | x |^ν$($ν> 0 $)的电势,类型的能量仅针对谐波电位进行设置。对于潜在的井而不是抛物线势能弱,而对于抛物线能量强的潜力占主导地位。由于节能,动能和势能的方差相等。在无限矩形电位井($ν\至\ infty $)的限制情况下,整个能量以动能的形式存储,能量分布的差异消失。
Using stochastic methods, general formulas for average kinetic and potential energies for anharmonic, undamped (frictionless), classical oscillators are derived. It is demonstrated that for potentials of $|x|^ν$ ($ν>0$) type energies are equipartitioned for the harmonic potential only. For potential wells weaker than parabolic potential energy dominates, while for potentials stronger than parabolic kinetic energy prevails. Due to energy conservation, the variances of kinetic and potential energies are equal. In the limiting case of the infinite rectangular potential well ($ν\to\infty$) the whole energy is stored in the form of the kinetic energy and variances of energy distributions vanish.