论文标题
任意$ m $ - QUDIT混合系统的纠缠距离
Entanglement distance for arbitrary $M$-qudit hybrid systems
论文作者
论文摘要
量子至上的实现增强了对量子信息强大的媒介的需求。在此任务中,较高的量子显示出显着的噪声耐受性和增强的量子密钥分布应用程序的安全性。但是,为了利用此类国家的优势,我们需要对它们的纠缠进行彻底的特征。在这里,我们提出了一种纠缠量的度量,可以针对$ M $ QUDIT混合系统的纯净和混合状态进行计算。纠缠措施基于源自Fubini-study度量的适用应用的距离。在局部统一变换下,该度量是不变的,并且具有我们得出的明确的可计算表达式。在$ M $ Qubit Systems的具体情况下,该措施假定了对无限临近状态之间最小距离的障碍的物理解释。最后,我们通过与其相关的度量张量的特征值分析来量化状态纠缠的鲁棒性。
The achievement of quantum supremacy boosted the need for a robust medium of quantum information. In this task, higher-dimensional qudits show remarkable noise tolerance and enhanced security for quantum key distribution applications. However, to exploit the advantages of such states, we need a thorough characterisation of their entanglement. Here, we propose a measure of entanglement which can be computed either for pure and mixed states of a $M$-qudit hybrid system. The entanglement measure is based on a distance deriving from an adapted application of the Fubini-Study metric. This measure is invariant under local unitary transformations and has an explicit computable expression that we derive. In the specific case of $M$-qubit systems, the measure assumes the physical interpretation of an obstacle to the minimum distance between infinitesimally close states. Finally, we quantify the robustness of entanglement of a state through the eigenvalues analysis of the metric tensor associated with it.