论文标题

$ \ Mathcal {pt} $ - 对称波导中的模态purcell因子

Modal Purcell factor in $\mathcal{PT}$-symmetric waveguides

论文作者

Morozko, Fyodor, Novitsky, Andrey, Karabchevsky, Alina

论文摘要

我们研究了两个偶联波导的对称环境,使用互惠方法推广到非官方系统的非正交特征模式。考虑到引导模式的发射,我们定义和计算由独立和干扰非正交模式的贡献组成的模态percell因子,导致purcell因子中跨模式项的出现。我们揭示了与Hermitian病例相比,在耦合模式理论中,耦合模式理论中模态Purcell因子的闭合形式表达略微改变了。即使在特殊点结合和彼得曼因素的特殊点附近,也是如此。通过主动和被动$ \ MATHCAL {PT} $ - 对称系统的数值模拟是模式非正交性的结果,这一结果得到了充分证实。

We study the spontaneous emission rate of a dipole emitter in $\mathcal{PT}$-symmetric environment of two coupled waveguides using the reciprocity approach generalized to non-orthogonal eigenmodes of non-Hermitian systems. Considering emission to the guided modes, we define and calculate the modal Purcell factor composed of contributions of independent and interfering non-orthogonal modes leading to the emergence of cross-mode terms in the Purcell factor. We reveal that the closed-form expression for the modal Purcell factor within the coupled mode theory slightly alters for the non-Hermitian coupled waveguide compared to the Hermitian case. It is true even near the exceptional point, where the eigenmodes coalesce and the Petermann factor goes to infinity. This result is fully confirmed by the numerical simulations of active and passive $\mathcal{PT}$-symmetric systems being the consequence of the mode non-orthogonality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源