论文标题

使用Active-Langevin模型了解人群流动

Understanding Crowd Flow Movements Using Active-Langevin Model

论文作者

Behera, Shreetam, Dogra, Debi Prosad, Bandyopadhyay, Malay Kumar, Roy, Partha Pratim

论文摘要

人群流描述了人群的基本群体行为。了解这些运动背后的动态可以帮助确定人群中的各种异常。但是,开发描述这些流程的人群模型是一项艰巨的任务。在本文中,提出了一个基于物理的模型来描述密集人群中的运动。人群模型基于主动兰格文方程,该方程式假定运动点类似于流体中的活动胶体颗粒。通过计算机视觉技术进一步增强该模型,以分割密集的人群中线性和非线性运动流动。主动兰格文方程的评估是在公开可用的人群视频和我们自己的视频上进行的。与现有的最新方法相比,所提出的方法能够以较小的光流误差和更好的准确性来分割流程。

Crowd flow describes the elementary group behavior of crowds. Understanding the dynamics behind these movements can help to identify various abnormalities in crowds. However, developing a crowd model describing these flows is a challenging task. In this paper, a physics-based model is proposed to describe the movements in dense crowds. The crowd model is based on active Langevin equation where the motion points are assumed to be similar to active colloidal particles in fluids. The model is further augmented with computer-vision techniques to segment both linear and non-linear motion flows in a dense crowd. The evaluation of the active Langevin equation-based crowd segmentation has been done on publicly available crowd videos and on our own videos. The proposed method is able to segment the flow with lesser optical flow error and better accuracy in comparison to existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源