论文标题
使用积分二次约束的向后无关,不确定的非线性系统
Backward Reachability using Integral Quadratic Constraints for Uncertain Nonlinear Systems
论文作者
论文摘要
提出了一种方法,以将强大的内部贴速率计算到不确定的非线性系统的向后触发设置。它还产生了强大的控制法,该法律将轨迹从这些集合开始驱动到目标集。该方法将耗散不等式和整体二次约束(IQC)与硬和软IQC因素化。使用广义的S-Procedure和Sum-of-Squares技术提出了计算算法。在向后的可达性分析中使用IQC允许各种扰动,包括参数不确定性,未建模的动态,非线性和不确定的时间延迟。该方法在两个示例中进行了证明,其中包括一个具有执行器不确定性的6态二次运动。
A method is proposed to compute robust inner-approximations to the backward reachable set for uncertain nonlinear systems. It also produces a robust control law that drives trajectories starting in these sets to the target set. The method merges dissipation inequalities and integral quadratic constraints (IQCs) with both hard and soft IQC factorizations. Computational algorithms are presented using the generalized S-procedure and sum-of-squares techniques. The use of IQCs in backward reachability analysis allows for a variety of perturbations including parametric uncertainty, unmodeled dynamics, nonlinearities, and uncertain time delays. The method is demonstrated on two examples, including a 6-state quadrotor with actuator uncertainties.