论文标题
布朗运动和加热内核下限在kähler和Quaternionkähler歧管上
Brownian motions and heat kernel lower bounds on Kähler and quaternion Kähler manifolds
论文作者
论文摘要
我们研究了kähler和Quaternionkähler歧管上布朗尼运动的径向部分。得益于尖锐的拉普拉斯比较定理,我们推断出了这种歧管的热核的尖锐脸颊易荷型,以及对公制球的dirichlet特征值的尖锐的cheng型估计值。
We study the radial parts of the Brownian motions on Kähler and quaternion Kähler manifolds. Thanks to sharp Laplacian comparison theorems, we deduce as a consequence a sharp Cheeger-Yau type lower bound for the heat kernels of such manifolds and also sharp Cheng's type estimates for the Dirichlet eigenvalues of metric balls.