论文标题
$λ_\ infty $&最大差异嵌入:测量和优化图指标的连接性
$λ_\infty$ & Maximum Variance Embedding: Measuring and Optimizing Connectivity of A Graph Metric
论文作者
论文摘要
Bobkov,Houdré和最后一位作者[2000]引入了图表型功能参数,$λ_\ infty $的图形$,以及通过cheeger-type的不平等现象与图形的连接相关。第二作者Raghavendra和Vempala [2013]的作品将$λ_\ infty $的复杂性与所谓的小型扩张(SSE)问题相关联,并进一步提出了此优化问题的NP-HARDATA。我们确认了计算$λ_\ infty $的猜想是加权树的np-hard。 除了测量许多应用程序中的连接性外,我们还希望优化它。通过凸双重性,这将导致机器学习中的一个问题,称为最大方差嵌入(MVE)。输出是从顶点到低昏暗的欧几里得空间的一个函数,但要受邻居之间欧几里得距离的边界。目的是最大化输出差异。 MVE分为$ n $的特殊情况和$ 1 $ dims导致绝对代数连接[1990]和传播常数[1998],分别衡量图形的连接及其笛卡尔$ n $ - 功率。 MVE在测量网络,聚类和降低尺寸的扩散速度和鲁棒性方面还有其他应用。 我们表明,在树宽度DIMS中计算MVE是NP-HARD,而给定树分解的宽度仅超过宽度,使其在P中的问题。我们表明,在2个DIMS中,树的MVE定义了非凸面但良性优化的景观,即local = local =全局optima。我们进一步为这种情况开发了线性时间组合算法。最后,我们表示近似最大方差嵌入在明显较低的昏暗中可以拖动。对于树木和一般图,对于该树木,最大方差嵌入不能以$ 2 $和$ω(n)$ dims解决,我们提供了$ 1+\ varepsilon $近似算法,以嵌入$ 1 $和$ o(\ log n /\ n /\ varepsilon^2)$ dims。
Bobkov, Houdré, and the last author [2000] introduced a Poincaré-type functional parameter, $λ_\infty$, of a graph and related it to connectivity of the graph via Cheeger-type inequalities. A work by the second author, Raghavendra, and Vempala [2013] related the complexity of $λ_\infty$ to the so-called small-set expansion (SSE) problem and further set forth the desiderata for NP-hardness of this optimization problem. We confirm the conjecture that computing $λ_\infty$ is NP-hard for weighted trees. Beyond measuring connectivity in many applications we want to optimize it. This, via convex duality, leads to a problem in machine learning known as the Maximum Variance Embedding (MVE). The output is a function from vertices to a low dim Euclidean space, subject to bounds on Euclidean distances between neighbors. The objective is to maximize output variance. Special cases of MVE into $n$ and $1$ dims lead to absolute algebraic connectivity [1990] and spread constant [1998], that measure connectivity of the graph and its Cartesian $n$-power, respectively. MVE has other applications in measuring diffusion speed and robustness of networks, clustering, and dimension reduction. We show that computing MVE in tree-width dims is NP-hard, while only one additional dim beyond width of a given tree-decomposition makes the problem in P. We show that MVE of a tree in 2 dims defines a non-convex yet benign optimization landscape, i.e., local=global optima. We further develop a linear time combinatorial algorithm for this case. Finally, we denote approximate Maximum Variance Embedding is tractable in significantly lower dims. For trees and general graphs, for which Maximum Variance Embedding cannot be solved in less than $2$ and $Ω(n)$ dims, we provide $1+\varepsilon$ approximation algorithms for embedding into $1$ and $O(\log n /\varepsilon^2)$ dims, respectively.