论文标题

智能家居能源管理系统的弹性

Smart Home Energy Management System for Power System Resiliency

论文作者

Gaikwad, Ninad, Raman, Naren Srivaths, Barooah, Prabir

论文摘要

由于自然灾害的频率增加,因此对电力供应的弹性的需求正在增加,例如飓风 - - 破坏了电网的供应。屋顶太阳能光伏(PV)面板以及电池在许多情况下都可以提供弹性。如果没有智能和自动化的决策,可以权衡矛盾的要求,则需要大型的光伏系统和大型电池来提供有意义的弹性。通过使用太阳能产生和家庭需求的预测,智能决策者可以操作设备(电池和关键负载),以确保将关键负载服务至可能的最大持续时间。借助这种智能控制系统,一个较小的(因此成本较低)的系统可以在相同的持续时间内为主要负载提供服务,以便否则将需要更大的系统。 在本文中,我们提出了这样的智能控制系统。使用了模型预测控制(MPC)体系结构,该体系结构使用可用的测量和预测来实时为电池和关键负载做出最佳决策。由于负载的ON/OFF决策,优化问题被称为MILP(混合整数线性程序)。将性能与非智能基线控制器进行比较,该系统为佛罗里达州的单个家庭房屋仔细选择了PV棒系统。模拟是在2017年飓风IRMA期间进行一周的一周。模拟表明,PV+电池系统提供一定的弹性性能的成本,持续时间可以成功维修主要负载,可以通过拟议的控制系统减半。

The need for resiliency of electricity supply is increasing due to increasing frequency of natural disasters---such as hurricanes---that disrupt supply from the power grid. Rooftop solar photovoltaic (PV) panels together with batteries can provide resiliency in many scenarios. Without intelligent and automated decision making that can trade off conflicting requirements, a large PV system and a large battery is needed to provide meaningful resiliency. By using forecast of solar generation and household demand, an intelligent decision maker can operate the equipment (battery and critical loads) to ensure that the critical loads are serviced to the maximum duration possible. With the aid of such an intelligent control system, a smaller (and thus lower cost) system can service the primary loads for the same duration that a much larger system will be needed to service otherwise. In this paper we propose such an intelligent control system. A model predictive control (MPC) architecture is used that uses available measurements and forecasts to make optimal decisions for batteries and critical loads in real time. The optimization problem is formulated as a MILP (mixed integer linear program) due to the on/off decisions for the loads. Performance is compared with a non-intelligent baseline controller, for a PV-battery system chosen carefully for a single family house in Florida. Simulations are conducted for a one week period during hurricane Irma in 2017. Simulations show that the cost of the PV+battery system to provide a certain resiliency performance, duration the primary load can be serviced successfully, can be halved by the proposed control system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源