论文标题

使用自适应参数和数据群集改进了VIV响应预测

Improved VIV response prediction using adaptive parameters and data clustering

论文作者

Wu, Jie, Yin, Decao, Lie, Halvor, Riemer-Sørensen, Signe, Sævik, Svein, Triantafyllou, Michael

论文摘要

细长的海洋结构(例如深水立管系统)不断暴露于导致结构涡流诱导的振动(VIV)的电流。这可能会导致放大的阻力载荷和疲劳损伤的快速积累。因此,对于海洋立管的安全设计和操作,准确的体内反应预测至关重要。使用弹性管道的模型测试表明,VIV响应受许多结构和流体动力学参数的影响,这些参数尚未在当前的频域VIV预测工具中完全建模。传统上,与观察到的现场测量和实验数据相比,使用一组流体动力学参数计算了预测,通常会导致预测准确性不一致。因此,在立管设计中必须实现高安全系数的高安全系数,这增加了开发成本并增加了现场操作中的额外约束。补偿数学预测模型中简化的一种方法是应用自适应参数来描述不同的立管响应。这项工作的目的是通过应用自适应流体动力学参数来展示一种新方法来提高预测一致性和准确性。在目前的工作中,已经提出了四步方法:首先,将分析测得的VIV响应以识别代表响应特征的关键参数。这些参数将使用数据聚类算法进行分组。其次,通过针对测量数据进行优化,将确定每个数据组的最佳流体动力参数。第三,将计算使用获得的参数的VIV响应,并评估预测精度。可以从聚类中获得的正确的流体动力参数可用于新情况。通过实验数据的示例,已经证明了这个概念。

Slender marine structures such as deep-water riser systems are continuously exposed to currents leading to vortex-induced vibrations (VIV) of the structure. This may result in amplified drag loads and fast accumulation of fatigue damage. Consequently, accurate prediction of VIV responses is of great importance for the safe design and operation of marine risers. Model tests with elastic pipes have shown that VIV responses are influenced by many structural and hydrodynamic parameters, which have not been fully modelled in present frequency domain VIV prediction tools. Traditionally, predictions have been computed using a single set of hydrodynamic parameters, often leading to inconsistent prediction accuracy when compared with observed field measurements and experimental data. Hence, it is necessary to implement a high safety factor of 10 - 20 in the riser design, which increases development cost and adds extra constraints in the field operation. One way to compensate for the simplifications in the mathematical prediction model is to apply adaptive parameters to describe different riser responses. The objective of this work is to demonstrate a new method to improve the prediction consistency and accuracy by applying adaptive hydrodynamic parameters. In the present work, a four-step approach has been proposed: First, the measured VIV response will be analysed to identify key parameters to represent the response characteristics. These parameters will be grouped using data clustering algorithms. Secondly, optimal hydrodynamic parameters will be identified for each data group by optimisation against measured data. Thirdly, the VIV response using the obtained parameters will be calculated and the prediction accuracy evaluated. The correct hydrodynamic parameters to be used for new cases can be obtained from the clustering. This concept has been demonstrated with examples from experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源