论文标题
投影平面图和三边形
Projective plane graphs and 3-rigidity
论文作者
论文摘要
结果表明,当且仅当它是(3,6) - –时,一个简单的图形可嵌入在实际投影平面中的3 rigid。此外,通过一系列顶点分裂移动,可以从8个嵌入式图中的一个之一构造这种类型的拓扑嵌入图。特别是,对于三角形的莫比乌斯带,最小三边形的表征是。
It is shown that a simple graph which is embeddable in the real projective plane is minimally 3-rigid if and only if it is (3,6)-tight. Moreover the topologically uncontractible embedded graphs of this type are constructible from one of 8 embedded graphs by a sequence of vertex splitting moves. In particular the characterisation of minimal 3-rigidity holds for a triangulated Mobius strip.