论文标题
全局21厘米信号从前景和仪器效应提取III:利用漂移扫描时间依赖性和完整的Stokes测量
Global 21-cm signal extraction from foreground and instrumental effects III: Utilizing drift-scan time dependence and full Stokes measurements
论文作者
论文摘要
当使用有效的前景和信号模型时,全局21-CM信号实验中提取的信号的不确定性主要取决于信号和前景模型之间的重叠。在本文中,我们研究了两种降低这种重叠的策略:(i)通过同时拟合多个漂移扫描频谱来利用时间依赖性,(ii)测量所有四个Stokes参数,而不是仅仅是总功率,但Stokes I,尽管测量极化需要在大多数现有实验中使用不同的工具,但是所有现有实验都可以通过所有现有实验来使用量度,但都可以使用量度来衡量量度,但可以利用其量度的数量。为了评估使用这两种技术的约束功率增加的增加,我们定义了一种将根平方(RMS)不确定性连接到概率置信度水平的方法。在使用模拟的情况下,我们发现仅拟合一个总功率谱会导致RMS在几个K级别上的不确定性,同时适合多个时间固定的漂移频谱,在$ \ lyssim 10 $ MK级别上产生了不确定性。仅当光谱用一组基础向量建模时,才会出现这种显着的改进,而不是使用独立建模每个频谱的多组基础向量。假设测量所有四个Stokes参数也可以准确模拟它们,也会导致较低的不确定性。可以同时采用这两种策略,并拟合所有四个Stokes参数的多个时间箱,可产生21 cm信号的最佳精度测量,从而接近数据中的噪声水平。
When using valid foreground and signal models, the uncertainties on extracted signals in global 21-cm signal experiments depend principally on the overlap between signal and foreground models. In this paper, we investigate two strategies for decreasing this overlap: (i) utilizing time dependence by fitting multiple drift-scan spectra simultaneously and (ii) measuring all four Stokes parameters instead of only the total power, Stokes I. Although measuring polarization requires different instruments than are used in most existing experiments, all existing experiments can utilize drift-scan measurements merely by averaging their data differently. In order to evaluate the increase in constraining power from using these two techniques, we define a method for connecting Root-Mean-Square (RMS) uncertainties to probabilistic confidence levels. Employing simulations, we find that fitting only one total power spectrum leads to RMS uncertainties at the few K level, while fitting multiple time-binned, drift-scan spectra yields uncertainties at the $\lesssim 10$ mK level. This significant improvement only appears if the spectra are modeled with one set of basis vectors, instead of using multiple sets of basis vectors that independently model each spectrum. Assuming that they are simulated accurately, measuring all four Stokes parameters also leads to lower uncertainties. These two strategies can be employed simultaneously and fitting multiple time bins of all four Stokes parameters yields the best precision measurements of the 21-cm signal, approaching the noise level in the data.