论文标题
一维量子气体的晶格调制光谱:吸收能量的通用缩放
Lattice modulation spectroscopy of one-dimensional quantum gases:Universal scaling of the absorbed energy
论文作者
论文摘要
晶格调制光谱是一种强大的工具,用于探测相互作用多体系统的低能激发。通过效率,我们分析了玻色子或费米子的一维相互作用量子气中的吸收功率,并经过光学晶格的周期性驱动。对于这些Tomonaga Luttinger液体,我们发现吸收功率的通用$ω^3 $缩放,当考虑到系统边界处的散射过程时,它在非常低频的情况下变成了$ω^2 $缩放。我们通过基于时间依赖性矩阵乘积状态的仿真来确认此行为。此外,在存在杂质的情况下,该理论预测了$ω^2 $散装缩放。虽然tomonaga luttinger液体的典型响应函数的特征是取决于相互作用强度的指数,但冷原子的调节光谱导致吸收功率的通用幂律指数。我们的发现可以在具有当前实验技术的光学晶格中很容易证明在超低原子中。
Lattice modulation spectroscopy is a powerful tool for probing low-energy excitations of interacting many-body systems. By means of bosonization we analyze the absorbed power in a one dimensional interacting quantum gas of bosons or fermions, subjected to a periodic drive of the optical lattice. For these Tomonaga Luttinger liquids we find a universal $ω^3$ scaling of the absorbed power, that at very low-frequency turns into an $ω^2$ scaling when scattering processes at the boundary of the system are taken into account. We confirm this behavior numerically by simulations based on time-dependent matrix product states. Furthermore, in the presence of impurities, the theory predicts an $ω^2$ bulk scaling. While typical response functions of Tomonaga Luttinger liquids are characterized by exponents that depend on the interaction strength, modulation spectroscopy of cold atoms leads to a universal power-law exponent of the absorbed power. Our findings can be readily demonstrated in ultracold atoms in optical lattices with current experimental technology.