论文标题

使用最佳二进制采样的幽灵成像

Ghost Imaging with the Optimal Binary Sampling

论文作者

Yang, Dongyue, Wu, Guohua, Luo, Bin, Yin, Longfei

论文摘要

为了从幽灵成像应用程序中的一系列二进制样本中提取有关对象的最大信息,我们提出并演示了一个框架,以优化使用二进制采样的幽灵成像的性能,以在没有二线化的情况下处理结果。该方法是基于通过制定和解决适当的参数估计问题来最大化信号臂检测的信息内容 - 找到具有最佳Fisher信息属性的重建图像的二进制阈值。将1位的泊松统计量化到具有伪用光的幽灵成像模型中,我们得出了基本限制,即cramer-rao下限,作为评估估计量准确性的基准。我们的神经模型和实验结果表明,借助最佳的二进化阈值,与所有水桶样品的统计平均值相一致,大量测量值,二进制采样GI的性能可以接近普通二进制的情况而无需二进制。

To extract the maximum information about the object from a series of binary samples in ghost imaging applications, we propose and demonstrate a framework for optimizing the performance of ghost imaging with binary sampling to approach the results without binarization. The method is based on maximizing the information content of the signal arm detection, by formulating and solving the appropriate parameter estimation problem - finding the binarization threshold that would yield the reconstructed image with optimal Fisher information properties. Applying the 1-bit quantized Poisson statistics to a ghost-imaging model with pseudo-thermal light, we derive the fundamental limit, i.e., the Cramer-Rao lower bound, as the benchmark for the evaluation of the accuracy of the estimator. Our theoertical model and experimental results suggest that, with the optimal binarization threshold, coincident with the statistical mean of all bucket samples, and large number of measurements, the performance of binary sampling GI can approach that of the ordinary one without binarization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源