论文标题

量子状态优化和计算途径评估栅极模型量子计算机

Quantum State Optimization and Computational Pathway Evaluation for Gate-Model Quantum Computers

论文作者

Gyongyosi, Laszlo

论文摘要

输入栅极模型量子计算机的计算问题可以通过特定的计算途径(目标函数连接)标识一个目标函数。计算问题的解决方案涉及确定要达到主题的目标目标函数值。栅极模型量子计算机中的瓶颈是几轮量子状态制剂,高成本运行序列和多轮测量值的要求,以确定实现目标目标函数值的量子计算机的目标(最佳)状态。在这里,我们定义了一种最佳量子状态确定和栅极模型量子计算机的计算路径评估的方法。我们证明了一种状态确定方法,该方法在给定目标目标函数值下找到量子计算机的目标系统状态。计算途径评估过程在量子计算机的固定硬件体系结构上设置了目标系统状态中目标函数的连接性。提出的解决方案会在量子计算机的初始状态和目标状态之间制备目标系统状态,而无需准备中间状态。我们的方法避免了高成本系统的状态准备以及昂贵的运行过程和栅极模型量子计算机中的测量设备。结果对于登机口量子计算和量子互联网的近期量子设备很方便。

A computational problem fed into a gate-model quantum computer identifies an objective function with a particular computational pathway (objective function connectivity). The solution of the computational problem involves identifying a target objective function value that is the subject to be reached. A bottleneck in a gate-model quantum computer is the requirement of several rounds of quantum state preparations, high-cost run sequences, and multiple rounds of measurements to determine a target (optimal) state of the quantum computer that achieves the target objective function value. Here, we define a method for optimal quantum state determination and computational path evaluation for gate-model quantum computers. We prove a state determination method that finds a target system state for a quantum computer at a given target objective function value. The computational pathway evaluation procedure sets the connectivity of the objective function in the target system state on a fixed hardware architecture of the quantum computer. The proposed solution evolves the target system state without requiring the preparation of intermediate states between the initial and target states of the quantum computer. Our method avoids high-cost system state preparations and expensive running procedures and measurement apparatuses in gate-model quantum computers. The results are convenient for gate-model quantum computations and the near-term quantum devices of the quantum Internet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源