论文标题

偏斜单类别的序列

The Sequent Calculus of Skew Monoidal Categories

论文作者

Uustalu, Tarmo, Veltri, Niccolò, Zeilberger, Noam

论文摘要

szlachányi的偏斜单类别是单型类别的良好动机变化,其中一单位者和关联人不需要自然同构,而只是在特定方向上的自然变化。我们提出了一个偏斜单类别的序列演算,这是基于tamari顺序的序列的一位作者的最新表述(偏度半群类别)。在该演算中,先例由Stoup(可选公式)组成,然后是上下文,而连接词的行为就像标准单型序列散文中的表现,只是只能在Stoup位置应用左规则。我们证明,对于自由偏度单体类别中的地图的存在,这种演算是合理的,并且一旦在推导派生上施加了适当的等价关系,就可以捕获地图的平等。然后,我们确定一个集中派生的子系统,并确定它完全包含每个等价类中的一个规范代表。这种连贯的定理直接导致简单的程序来决定自由偏斜单类别中地图的平等性,并列举任何没有重复的人体。最后,本着兰贝克(Lambek)的工作精神,我们描述了这种证明理论分析与伯克(Bourke)的紧密联系,而伯克(Bourke)和缺乏对偏斜单类类别的表征是左代表的偏度多材。我们已经在依赖类型的编程语言AGDA中形成了这种发展。

Szlachányi's skew monoidal categories are a well-motivated variation of monoidal categories in which the unitors and associator are not required to be natural isomorphisms, but merely natural transformations in a particular direction. We present a sequent calculus for skew monoidal categories, building on the recent formulation by one of the authors of a sequent calculus for the Tamari order (skew semigroup categories). In this calculus, antecedents consist of a stoup (an optional formula) followed by a context, and the connectives behave like in the standard monoidal sequent calculus except that the left rules may only be applied in stoup position. We prove that this calculus is sound and complete with respect to existence of maps in the free skew monoidal category, and moreover that it captures equality of maps once a suitable equivalence relation is imposed on derivations. We then identify a subsystem of focused derivations and establish that it contains exactly one canonical representative from each equivalence class. This coherence theorem leads directly to simple procedures for deciding equality of maps in the free skew monoidal category and for enumerating any homset without duplicates. Finally, and in the spirit of Lambek's work, we describe the close connection between this proof-theoretic analysis and Bourke and Lack's recent characterization of skew monoidal categories as left representable skew multicategories. We have formalized this development in the dependently typed programming language Agda.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源