论文标题

人类活动识别和秋季检测的傅立叶域特征方法

A Fourier Domain Feature Approach for Human Activity Recognition & Fall Detection

论文作者

Khatun, Asma, Hossain, Sk. Golam Sarowar

论文摘要

老年人在日常生活(ADL)的同时出于年龄,感官,孤独和认知变化的原因而导致各种问题。这些导致ADL的风险导致几个跌倒。获取现实生活中的跌倒数据是一个困难的过程,并且不可用,而模拟跌倒变得无处不在,无法评估所提出的方法。从文献综述中可以研究,大多数研究人员使用信号数据的原始和能量特征(时域特征),因为这些特征是最有区别的。但是,在现实生活中,跌落信号可能比当前的模拟数据嘈杂。因此,在现实生活中使用时,使用RAW功能的结果可能会发生巨大变化。这项研究使用频域傅立叶系数特征来区分日常生活的各种人类活动。使用那些快速傅立叶变换构建的特征向量对噪声和旋转不变是可靠的。两个不同的监督分类器KNN和SVM用于评估该方法。两个标准可公开的数据集用于基准分析。在这项研究中,与SVM分类器相比,使用KNN分类器获得了更多的区分结果。已经考虑了各种标准措施,包括标准精度(SA),宏平均准确性(MAA),灵敏度(SE)和特异性(SP)。在所有情况下,所提出的方法的表现都优于能量特征,而竞争结果则以原始特征显示。还注意到,所提出的方法的性能要比最近不使用数据增强方法的最近复活的深度学习方法更好。

Elder people consequence a variety of problems while living Activities of Daily Living (ADL) for the reason of age, sense, loneliness and cognitive changes. These cause the risk to ADL which leads to several falls. Getting real life fall data is a difficult process and are not available whereas simulated falls become ubiquitous to evaluate the proposed methodologies. From the literature review, it is investigated that most of the researchers used raw and energy features (time domain features) of the signal data as those are most discriminating. However, in real life situations fall signal may be noisy than the current simulated data. Hence the result using raw feature may dramatically changes when using in a real life scenario. This research is using frequency domain Fourier coefficient features to differentiate various human activities of daily life. The feature vector constructed using those Fast Fourier Transform are robust to noise and rotation invariant. Two different supervised classifiers kNN and SVM are used for evaluating the method. Two standard publicly available datasets are used for benchmark analysis. In this research, more discriminating results are obtained applying kNN classifier than the SVM classifier. Various standard measure including Standard Accuracy (SA), Macro Average Accuracy (MAA), Sensitivity (SE) and Specificity (SP) has been accounted. In all cases, the proposed method outperforms energy features whereas competitive results are shown with raw features. It is also noticed that the proposed method performs better than the recently risen deep learning approach in which data augmentation method were not used.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源