论文标题

完美跨表隔离器的拓扑理论

Topological Theory for Perfect Metasurface Isolators

论文作者

Wong, Wai Chun, Wang, Wenyan, Yau, Wang Tat, Fung, Kin Hung

论文摘要

我们介绍了完美隔离的拓扑理论:从一侧的完美传播和同时从另一侧进行全面反射。该理论提供了一种有效的方法来确定在有限的参数空间内是否存在这样的完美隔离点。在本文中,我们使用洛伦兹非核心跨表面的示例演示了理论,该e依二颗粒由二聚体单位细胞组成。我们的理论还表明,完美的隔离点可以通过相反的拓扑电荷的合并来互相消灭。我们的发现可能导致高性能光学隔离器的新设计。

We introduce topological theory of perfect isolation: perfect transmission from one side and total reflection from another side simultaneously. The theory provides an efficient approach for determining whether such a perfect isolation point exists within a finite parameter space. Herein, we demonstrate the theory using an example of a Lorentz non-reciprocal metasurface composed of dimer unit cells. Our theory also suggests that perfect isolation points can annihilate each other through the coalescence of opposite topological charges. Our findings could lead to novel designs for high-performance optical isolators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源