论文标题

六边形石墨烯量子点真空的崩溃:紧密结合与平均场哈伯德模型之间的比较研究

Collapse of the vacuum in hexagonal graphene quantum dots: a comparative study between the tight-binding and the mean-field Hubbard models

论文作者

Polat, Mustafa, Sevinçli, Hâldun, Güçlü, A. D.

论文摘要

在本文中,我们对使用两种不同的杂质在存在的六角形石墨烯量子点(GQD)的电子,磁性和传输性能进行系统研究,并使用两种不同的杂质,使用两种不同的配置:(1)中央库仑电势和(2)带有带电的碳空位。紧密结合(TB)和半填充的扩展哈伯德模型是数值求解的,并相互比较,以揭示电子相互作用和系统大小的影响。数值结果指出,异地库仑排斥力导致临界耦合常数增加到$β_ {\ text {c}} $ = 0.6,以获得中央库仑电位。 $β$的这种临界值被发现与GQD大小无关,即使在存在电子电子相互作用的情况下,也反映了其通用性。此外,传输峰突然下降显示了从亚临界$β$ $ <$ <$ $ <$ <$ <$ <$ <$ <$ <$ <$ <text {c}} $过渡到超临界$β$β$ $β$ $> $β_ {\ text {c}}} $制度。另一方面,对于带正电荷的空缺,最低界面状态的崩溃发生在$β_ {\ text {c}} $ = 0.7的相互作用情况下。有趣的是,当空缺被亚批判性充电时,由裸碳空位引起的局部磁矩被完全淬灭,而电子中的山谷分布在两个方案中都持续存在。

In this paper, we perform a systematic study on the electronic, magnetic, and transport properties of the hexagonal graphene quantum dots (GQDs) with armchair edges in the presence of a charged impurity using two different configurations: (1) a central Coulomb potential and (2) a positively charged carbon vacancy. The tight binding (TB) and the half-filled extended Hubbard models are numerically solved and compared with each other in order to reveal the effect of electron interactions and system sizes. Numerical results point out that off-site Coulomb repulsion leads to an increase in the critical coupling constant to $β_{\text{c}}$ = 0.6 for a central Coulomb potential. This critical value of the $β$ is found to be independent of GQD size, reflecting its universality even in the presence of electron-electron interactions. In addition, a sudden downshift in the transmission peaks shows a clear signature of the transition from subcritical $β$ $<$ $β_{\text{c}}$ to supercritical $β$ $>$ $β_{\text{c}}$ regime. On the other hand, for a positively charged vacancy, the collapse of the lowest bound state occurs at $β_{\text{c}}$ = 0.7 for the interacting case. Interestingly, the local magnetic moment, induced by a bare carbon vacancy, is totally quenched when the vacancy is subcritically charged, whereas the valley splittings in electron and hole channels continue to exist in both regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源