论文标题

基于高效的cholesky分解的V-Blast的改进的正方根算法

An Improved Square-root Algorithm for V-BLAST Based on Efficient Inverse Cholesky Factorization

论文作者

Zhu, Hufei, Chen, Wen, Li, Bin, Gao, Feifei

论文摘要

提出了一种逆cholesky分解的快速算法,以计算垂直钟形实验室分层时空体系结构(V-blast)的估计误差协方差矩阵的三角形平方根。然后将其应用于为V-Blast提出改进的Square-rot算法,该算法在上一步中加速了几个步骤,并且可以在MIMO正交频施加多元化(OFDM)系统中提供进一步的计算节省。与常规的cholesky逆因化相比,提出的一个人避免了(cholesky因子)的后背替代,然后仅需要一半的划分。所提出的V-Blast算法比现有的有效V-Blast算法快。在前一个和最快的递归V-Blast算法上,提出的正方形v-blast算法的预期速度分别为3.9〜5.2和1.05〜1.4。

A fast algorithm for inverse Cholesky factorization is proposed, to compute a triangular square-root of the estimation error covariance matrix for Vertical Bell Laboratories Layered Space-Time architecture (V-BLAST). It is then applied to propose an improved square-root algorithm for V-BLAST, which speedups several steps in the previous one, and can offer further computational savings in MIMO Orthogonal Frequency Division Multiplexing (OFDM) systems. Compared to the conventional inverse Cholesky factorization, the proposed one avoids the back substitution (of the Cholesky factor), and then requires only half divisions. The proposed V-BLAST algorithm is faster than the existing efficient V-BLAST algorithms. The expected speedups of the proposed square-root V-BLAST algorithm over the previous one and the fastest known recursive V-BLAST algorithm are 3.9~5.2 and 1.05~1.4, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源