论文标题

SOS:快速免疫荧光的选择性客观开关全幻灯片图像分类

SOS: Selective Objective Switch for Rapid Immunofluorescence Whole Slide Image Classification

论文作者

Maksoud, Sam, Zhao, Kun, Hobson, Peter, Jennings, Anthony, Lovell, Brian

论文摘要

在临床显微镜中处理Gigapixel全滑动图像(WSI)的困难已成为实施计算机辅助诊断系统的长期障碍。由于现代计算资源无法在这个极大的规模上执行计算,因此当前的最新方法利用基于补丁的处理来保留WSIS的分辨率。但是,这些方法通常是资源密集的,并且在处理时间上造成了重大折衷。在本文中,我们证明,对于某些WSI分类任务,基于贴片的处理是多余的,在这些WSI分类任务中,仅在少数情况下才需要高分辨率。这反映了临床实践中观察到的内容;病理学家可以使用低功率目标筛选幻灯片,并且在不确定发现的情况下仅切换到高功率。为了消除这些冗余,我们提出了一种基于对缩小缩放WSIS的预测的置信度选择性使用高分辨率处理的方法 - 我们将其称为选择性目标开关(SOS)。我们的方法在684个肝脏 - kidney-stomphow免疫荧光WSI的新型数据集上进行了验证,该数据通常用于研究自身免疫性肝病。通过将高分辨率处理限制为无法在低分辨率下自信地分类的情况,我们保持斑点级分析的准确性,同时将推理时间降低为7.74。

The difficulty of processing gigapixel whole slide images (WSIs) in clinical microscopy has been a long-standing barrier to implementing computer aided diagnostic systems. Since modern computing resources are unable to perform computations at this extremely large scale, current state of the art methods utilize patch-based processing to preserve the resolution of WSIs. However, these methods are often resource intensive and make significant compromises on processing time. In this paper, we demonstrate that conventional patch-based processing is redundant for certain WSI classification tasks where high resolution is only required in a minority of cases. This reflects what is observed in clinical practice; where a pathologist may screen slides using a low power objective and only switch to a high power in cases where they are uncertain about their findings. To eliminate these redundancies, we propose a method for the selective use of high resolution processing based on the confidence of predictions on downscaled WSIs --- we call this the Selective Objective Switch (SOS). Our method is validated on a novel dataset of 684 Liver-Kidney-Stomach immunofluorescence WSIs routinely used in the investigation of autoimmune liver disease. By limiting high resolution processing to cases which cannot be classified confidently at low resolution, we maintain the accuracy of patch-level analysis whilst reducing the inference time by a factor of 7.74.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源