论文标题

在复杂趋势下的时变自动协方差的估计和推断:一种基于差异的方法

Estimation and Inference of Time-Varying Auto-Covariance under Complex Trend: A Difference-based Approach

论文作者

Cui, Yan, Levine, Michael, Zhou, Zhou

论文摘要

我们提出了一种基于差异的非参数方法,用于估计和推断本地固定时间序列的随时间变化的自动辅助功能,并被突然和平滑变化的复杂趋势污染时。在复杂趋势下,构建了具有渐近覆盖概率的同时置信带(SCB)。提出了一种模拟辅助引导方法,以实现SCB的实际结构。详细的仿真和一个真实的数据示例填写了我们的演示文稿。

We propose a difference-based nonparametric methodology for the estimation and inference of the time-varying auto-covariance functions of a locally stationary time series when it is contaminated by a complex trend with both abrupt and smooth changes. Simultaneous confidence bands (SCB) with asymptotically correct coverage probabilities are constructed for the auto-covariance functions under complex trend. A simulation-assisted bootstrapping method is proposed for the practical construction of the SCB. Detailed simulation and a real data example round out our presentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源